Background

Project: Create a comprehensive map of campus to be used for future stormwater modeling. Rainfall-runoff models show how water flows across different surfaces on campus. Modeling results will help determine optimum locations for rain gardens in order to reduce runoff.

Why Stormwater Management?
- **Reduces flooding** by decreasing water that flows through storm sewers and into rivers and lakes.
- **Limits soil erosion** by reducing the amount of runoff that can wash soil away.
- **Maintains high water quality** by reducing the amount of contaminants, such as fertilizers, pesticides, oils, and heat, that reach rivers.
- **Increases groundwater recharge** by limiting runoff and promoting infiltration.

What Affects Stormwater Flow?

- Rainwater
 - Land cover
 - Topography
 - Rainfall Intensity
 - Storm Sewers
 - Downspouts

Runoff

Infiltration

Equipment

1. Sokkia® Automatic level to survey elevation (± 0.5 cm).
2. Trimble® GeoXH (GPS) for sewer and downspout positions and elevations (± 10 cm).
3. Brunton compass for surveying and measuring downspout aspect.
4. Tape measure (numerous uses).
5. Stadia rod for surveying.
6. Nikon® Laser Rangefinder to measure distances and heights.

Mapping Process

- **Downspout** and **sewer grate** locations were recorded using the GeoXH and refined using an aerial photo taken in late 2010 and obtained from the City of Beloit.
- **Land cover** was determined using the aerial photo.
- **Elevation** was determined using the GeoXH except near buildings and beneath trees where GPS signals were poor. Surveying equipment was used in these areas.

Result

- **Files of spatial data compiled for campus:**
 - Storm sewers including position, shape, and size.
 - Downspouts including position, aspect, distance from building, and height above ground.
 - Buildings including name, primary use, area, and roof height.
 - Land cover including seven different surface types.
 - Elevation across campus.

Recommendations

- Split lawn cover type into grass, shrubs, and plantings.
- Map locations and canopy density of trees on campus.
- Improve elevation data west of Neese Theatre, north east of Campbell Hall, surrounding Morse Library, and down the hill toward Pleasant Drive and Nikki’s Cafe.

Acknowledgments

Special thanks to Dr. Sue Swanson who was my project supervisor and an excellent mentor. Thanks also to India John for her help as a survey partner and Lucile Tepsa for her photo and survey assistance.