PERIODIC TILINGS AND TILINGS BY REGULAR POLYGONS

by

DARRAH PERRY CHAVEY

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

(Mathematics)

at the

UNIVERSITY OF WISCONSIN - MADISON

1984
PERIODIC TILINGS AND TILINGS BY REGULAR POLYGONS

Darrah Perry Chavey

Under the supervision of Professor Donald W. Crowe

Abstract: We assume a tiling has, under its symmetry group, \(v \) orbits of vertices; \(e \) orbits of edges; and \(t \) orbits of tiles. Inequalities are established relating these parameters, both for arbitrary tilings and for tilings by regular polygons, and we show that some of these inequalities are sharp. In the case of tilings by regular polygons, we classify those tilings with \(v \leq 3 \), \(e \leq 3 \), or \(t \leq 2 \), and show that the number of tilings with some fixed number of orbits of vertices [or edges; or tiles] is finite. The edge figures which can occur in a tiling by regular polygons are classified, as are tilings which contain at most three different types of these edge figures.

Progress is made towards classifying those tilings by regular polygons which contain at most two different types of vertex figures.

With respect to tilings by regular polygons which contain only two types of tiles (two congruence classes of polygons), the number of possible orbits of each polygon is determined. Tilings by regular polygons in which any two congruent tiles are equivalent under the symmetries of the tiling are classified, as are tilings which satisfy a similar condition on the edges.
"We're all in it - we're all tilled, here."

 Olga,

"He's got 'em on the list - he's got 'em on the list;
And they'll none of them be missed - they'll none of them
be missed."

 Chorus of Men,
 The Mikado, by Gilbert and Sullivan.

Dedicated to the two women I love
 Peggy and Eunice Chavey.
Acknowledgements

Now that it's almost over, it seems amazing to me that my friends and my thesis committee (which are not exclusive) have managed to put up with me for the last month or so. They are among the many people I wish to thank for helping to make this thesis possible.

None of this work would have been possible without the excellent survey of the subject by Grünbaum and Shephard, and I wish to thank them for making their advance copy available to us. Professors Donald Crowe and Michael Bleicher deserve thanks for their efforts in creating and sustaining a seminar covering this work, and it was from this seminar that most of these results developed.

Much of the work in this thesis owes a great deal, in ways that are difficult to pin down, to conversations with Don Crowe and Mike Bleicher; but some of the work can be more directly attributed to my colleagues. Mary Leland discovered one class of tilings used in the proof of theorem 2.3 (as mentioned there), and this class helps to extend the known range of realizable parameters in tilings. The nice proof of fact 1 in section 1.3 is a drastic improvement of my original, and this proof was pointed out by John Rosenberg. Elsa Gunter volunteered to draw most of the tilings in figures 5.2 - 5.5 on a Carnegie-Mellon laser printer, and these figures (one of prettier aspects of the thesis) would have been impossible without her help.
The remaining tilings in these figures were constructed by hand, mostly through the aid of Peggy Chavey, and I am indebted to her for this (among other things). Figures 3.1, 4.1, and 4.2 are all taken from Grünbaum and Shephard's works.

From a more personal standpoint, I would like to thank those people who have been instrumental in my mathematical development. First and foremost among these is my mother — who encouraged me from a young age, and first introduced me to such topics as projective geometry and number theory. If my memory serves me correctly, she also is the one who introduced me to H.S.M. Coxeter, who is now my academic grandfather. I must also mention Leonard Forbush, a high school instructor and a strong influence on me both mathematically and personally; and Prof. William V. Caldwell (Univ. of Mich.-Flint), who once told me "You can't be a promising young mathematician all your life." Memories of his admonishments to me have helped a great deal in preventing my extra-curricular activities from overwhelming my mathematics.

More recently, I wish to thank the friends who have helped me maintain sanity and willpower during this recent struggle to finish. Peggy, my wife, who along with her much needed personal aid and support, also drew figures, proofread the thesis, corrected unintelligible passages, and generally gave up her summer to help me. Mary and Will Leland have been great friends in a bind, especially Mary,
who took the time to give copious comments on improvements in my proofs, and took several days out of her schedule to help me with this at the end. Carolyn Birr's volunteer help in finishing up the typing, combined with the extra work Peggy Chavey took on, has helped me give my thesis the appearance I would like it to have. Without their help, I may still not have had time to include the drawings of the vertex-homogeneous tilings in chapter 5.

Finally, I cannot thank Don Crowe, my advisor, quite enough for all the help he has been. At times, it seems he was spending as much time on my work as I was; and he contributed a great deal to helping my writing and improving both my mathematics and my mathematical exposition. Throughout my graduate career, he has introduced me to many fascinating areas of mathematics and has always been willing to help or just to listen. I am very pleased to have been able to finish my degree under him.
Table of Contents

Abstract

Epigraph

Dedication

Acknowledgements

Table of Contents

List of Figures

List of Tables

Ch. 1. Definitions and Basic Properties

1.1: Definitions

1.2: Research Survey

1.3: Tilings Without Singular Points

Ch. 2. Properties of Periodic Tilings

Ch. 3. Tilings by Regular Polygons

3.1: Classification of the Elements of a Tiling

3.2: Finiteness of Tilings with k Orbits of an Element

3.3: Bounds on the Number of Orbits of an Element
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Periodic tiling by squares with singular points.</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>One of Kepler's tilings and the tiling that he seems to have meant.</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Tiling containing elements not incident to any elements of various other classes.</td>
<td>18</td>
</tr>
<tr>
<td>1.4</td>
<td>Tiling with disconnected graph and dual graph.</td>
<td>23</td>
</tr>
<tr>
<td>1.5</td>
<td>Tiling with connected graph and disconnected dual graph.</td>
<td>23</td>
</tr>
<tr>
<td>1.6</td>
<td>Tiling with disconnected graph and connected dual graph.</td>
<td>23</td>
</tr>
<tr>
<td>2.1</td>
<td>Locally regular tilings without connected representative sets of elements.</td>
<td>35</td>
</tr>
<tr>
<td>2.2</td>
<td>Tilings with $t = e + 1$ and $v = 1$.</td>
<td>39</td>
</tr>
<tr>
<td>2.3</td>
<td>Tilings with $t = e + 1$ and $1 < v < t$.</td>
<td>39</td>
</tr>
<tr>
<td>2.4</td>
<td>Tilings with $\frac{e - 1}{2} < t < e + 1$.</td>
<td>39</td>
</tr>
<tr>
<td>2.5</td>
<td>Tilings with $\frac{e - 1}{3} < t < \frac{e + 1}{2}$.</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>The 15 vertex figures in tilings by regular polygons.</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Three tilings used to show the existence of certain edge types in tilings by regular polygons.</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>A 6-isogonal portion of a tiling containing certain edge types, and a 6-isogonal tiling containing it.</td>
<td>51</td>
</tr>
<tr>
<td>3.4</td>
<td>The fundamental region generated by a set of vertices and its closure.</td>
<td>59</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.5</td>
<td>Two tilings with the same fundamental regions and closures.</td>
<td>59</td>
</tr>
<tr>
<td>3.6</td>
<td>Regular polygon tilings with (t = e - 1) and (t = 2v).</td>
<td>71</td>
</tr>
<tr>
<td>3.7</td>
<td>Regular polygon tilings with (v = e - 1) and (v = 2t - 1).</td>
<td>71</td>
</tr>
<tr>
<td>3.8</td>
<td>Regular polygon tilings with (e = 3t - 9).</td>
<td>71</td>
</tr>
<tr>
<td>4.1</td>
<td>The 11 isogonal tilings by regular polygons.</td>
<td>76</td>
</tr>
<tr>
<td>4.2</td>
<td>The 20 2-isogonal tilings by regular polygons.</td>
<td>79–80</td>
</tr>
<tr>
<td>4.3</td>
<td>The 2-gonal configuration forced by an edge of type (3.4.3^2.4 / 4.3.12.3).</td>
<td>82</td>
</tr>
<tr>
<td>4.4</td>
<td>A 4-isogonal tiling containing edges of type (3.4.3^2.4 / 4.6.4.3).</td>
<td>82</td>
</tr>
<tr>
<td>4.5</td>
<td>The 2-gonal configuration forced by an edge of type (3.4.3^2.4 / 4.6.4.3).</td>
<td>82</td>
</tr>
<tr>
<td>4.6</td>
<td>The configuration forced by an edge meeting 2 hexagons in a (3^3.4^2; 3.4.6.4) tiling.</td>
<td>86</td>
</tr>
<tr>
<td>4.7</td>
<td>A forbidden configuration in a (3^3.4^2; 3.4.6.4) tiling with fused disks.</td>
<td>86</td>
</tr>
<tr>
<td>4.8</td>
<td>A forbidden configuration in a (3^2.4.3.4; 3.4.6.4) tiling.</td>
<td>86</td>
</tr>
<tr>
<td>4.9</td>
<td>Examples of tilings with varying numbers of orbits of triangles and hexagons.</td>
<td>97</td>
</tr>
<tr>
<td>4.10 - 4.15</td>
<td>Edge figures and portions of tilings forced by them in the proof of theorem 4.8.</td>
<td>102</td>
</tr>
<tr>
<td>4.16</td>
<td>A 4-toxal tiling by regular polygons which is not 4-isotoxal.</td>
<td>108</td>
</tr>
</tbody>
</table>
5.1 The 3-isogonal, vertex-homogeneous tilings by regular polygons. 111-117
5.2 The 4-isogonal, vertex-homogeneous tilings by regular polygons. 118-126
5.3 The 5-isogonal, vertex-homogeneous tilings by regular polygons. 127-130
5.4 The 6-isogonal, vertex-homogeneous tilings by regular polygons. 131-133
5.5 The 7-isogonal, vertex-homogeneous tilings by regular polygons. 134-135
5.6 The 3-isogonal, 2-gonal tilings by regular polygons. 136-139
5.7 Theorem 5.1, case 3. 143
5.8 Theorem 5.1, case 4. 148
5.9 Theorem 5.1, case 5. 148
5.10 Theorem 5.1, case 6. 151
5.11 Theorem 5.1, case 7. 153
5.12 Theorem 5.1, case 8. 158-160
5.13 The one tile-homogeneous tiling by regular polygons with more than 3 orbits of vertices. 166
5.14 Theorem 5.2, case 3. 166
5.15 Theorem 5.2, case 4. 166
5.16 Theorem 5.2, case 5. 170
List of Tables

1. Vertex types which occur in edge-to-edge tilings by regular polygons.
 Page 45

2. Monogonal edge types which occur in edge-to-edge tilings by regular polygons.
 Page 53

3. Non-monogonal edge types which occur in edge-to-edge tilings by regular polygons.
 Page 55
List of Results

<table>
<thead>
<tr>
<th>Chapter 1 (general tilings):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fact 1: Intersections of three tiles.</td>
<td>20</td>
</tr>
<tr>
<td>Fact 2: Boundaries of tiles are unions of edges.</td>
<td>20</td>
</tr>
<tr>
<td>Fact 3: Endpoints of edges are vertices.</td>
<td>21</td>
</tr>
<tr>
<td>Fact 4: The valence of a vertex is at least 3.</td>
<td>21</td>
</tr>
<tr>
<td>Lemma 1.1: Connectedness of graphs and dual graphs in the absence of singular points.</td>
<td>24</td>
</tr>
<tr>
<td>Lemma 1.2: Connectedness of dual graphs.</td>
<td>25</td>
</tr>
<tr>
<td>Theorem 1.3: Equivalence of the finiteness of v, e, or t with periodicity.</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2 (general tilings):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lemma 2.1: Connected representative sets of elements.</td>
<td>32</td>
</tr>
<tr>
<td>Lemma 2.2: Connected representative sets for locally regular tilings.</td>
<td>34</td>
</tr>
<tr>
<td>Theorem 2.3: Bounds on v and t as functions of e; and ranges of realizable parameters.</td>
<td>36</td>
</tr>
<tr>
<td>Corollary 2.4: Bounds on the Euler characteristic of a tiling.</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3 (edge-to-edge tilings by regular polygons):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorem 3.1: Classification of edge types.</td>
<td>47</td>
</tr>
<tr>
<td>Lemma 3.2: Uniqueness of tilings with a given fundamental region and closure.</td>
<td>61</td>
</tr>
<tr>
<td>Theorem 3.3: Finiteness of the number of v-isogonal, e-isotoxal, or t-isohedral tilings.</td>
<td>63</td>
</tr>
</tbody>
</table>
Corollary 3.4: Finiteness results for more general tilings. 64
Lemma 3.5: Tilings with bipartite graphs. 66
Theorem 3.6: Bounds on v, e, and t as functions of the other parameters. 67
Corollary 3.7: Classification of isotoxal and 2-isotoxal tilings. 69
Theorem 3.8: Extreme values of v, e, and t as functions of the other parameters. 70
Theorem 3.9: Ranges of realizable parameters. 72

Chapter 4 (edge-to-edge tilings by regular polygons):

Theorem 4.1: Classification of edge types occurring in 2-gonal tilings. 77
Corollary 4.2: Classification of vertex pairs occurring in 2-gonal tilings. 78
Lemma 4.3: Classification of the 2-gonal tilings which which are forced to be 2-isogonal. 84
Lemma 4.4: Classification of 2-gonal tilings which only exist as tilings by strips. 90
Lemma 4.5: Classification of some 2-gonal tilings as modifications of other tilings. 92
Theorem 4.6: Partial classification of 2-hedral tilings. 94
Theorem 4.7: Numbers of orbits of triangles and hexagons in tilings by these two polygons. 96
Theorem 4.8: Classification of 1-, 2-, and 3-toxal tilings and of 1-, 2-, and 3-isotoxal tilings. 99
Chapter 5 (edge-to-edge tilings by regular polygons):

Theorem 5.1: Classification of 3-isogonal tilings. 140

Theorem 5.2: Classification of tile-homogeneous tilings. 165

Corollary 5.3: Classification of 2-isohedral tilings. 171

Corollary 5.4: Listing of tile-homogeneous tilings. 172

Theorem 5.5: Classification of strongly edge-homogeneous tilings. 173

Corollary 5.6: Listing of strongly edge-homogeneous tilings. 174
References

A. Badoureau
1881 Mémoire sur les figures isocèles.
J. École Polytechnique, 49(1881), 47-172.

M. Breen
1983 A Characterization Theorem for Tilings having Countably
Many Singular Points.

D. Chavey
1984 Periodic Tilings and Tilings by Regular Polygons I: Bounds
on the Number of Orbits of Vertices, Edges, and Tiles.
Mitteilungen aus dem Mathem. Seminar Giessen, 164(2),

J. P. Conlan
1976 Derived Tilings.
J. Combinatorial Theory (A) 20(1976), 34-40.

E. S. Fedorov
1891 Symmetry in the Plane. (Russian).
Zapiski Rus. Mineralog. Obscestva, Ser. 2, 28(1891),
345-390 + 2 plates.
B. Grünbaum and G. C. Shephard

1977a Tilings by Regular Polygons.

1977b The Eighty-one Types of Isohedral Tilings in the Plane.

1978a Isohedral Tilings of the Plane by Polygons.

1978b Isotoxal Tilings.

1978c The Ninety-one Types of Isogonal Tilings in the Plane.

1979a Incidence Symbols and their Applications.
 Relations between combinatorics and other parts of

1979b Erratum to "The Ninety-one Types of Isogonal Tilings in
 the Plane".

1980a Tilings with Regular Polygons. Models in the Plane from
 the Days of Kepler to Today, with Recent Results and
 Unsolved Problems. (Italian)

1980b Errata corrigé: "Tilings with Regular Polygons". (Italian)
 Archimede 32(1980), 135.

T. Heath

J. Kepler

1619 Harmonice Mundi. Lincii, 1619.

German translation: Weltharmonik, M. Caspar, 1939.

O. Krötenheerdt

L. Lévy

1891 Sur les pavages à l'aide de polygones réguliers.

1894 Question 262.

P. Niggli

1926 Die regelmässige Punktverteilung längs einer Geraden in einer Ebene. (Symmetrie von Bordürmuster.)
Z. Krist. 63(1926), 255-274.

D. M. Y. Sommerville

1905 Semi-regular Networks of the Plane in Absolute Geometry.

A. Valette

1981 Tilings of the Plane by Topological Disks.